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Abstract

This article presents the complete von Neumann stability analysis of a predictor/multi-corrector scheme derived from
an implicit mid-point time integrator often used in shock hydrodynamics computations in combination with staggered
spatial discretizations. It is shown that only even iterates of the method yield stable computations, while the odd
iterates are, in the most general case, unconditionally unstable. Dispersion error analysis is also presented.
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1. Introduction

The present article proposes a complete von Neumann stability and dispersion analysis of a linearized version of
the time-integration algorithm presented in [14, 15]. Thisapproach is based on a predictor/multi-corrector variant
of the implicit mid-point time integrator, and has the appealing property of conserving mass, momentum and total
energy in the nonlinear setting, without staggeringin time the thermodynamic variables with respect to the kinematic
variables. The algorithm exactly corresponds to the staggered (in space) finite difference formulations of [2, 4] in the
case of one spatial dimension and periodic boundary conditions.

Recently, the authors have discovered that the proposed algorithm does notyield stable solutions in the case of
an odd number of iterations, and the present work is a documentation of the detailed analysis that followed these
initial observations. We would also like to mention the veryrecent, and very interesting stability analysis [3] for the
staggered scheme proposed in [4] over a two-dimensional, uniform, periodic grid. The analysis in [3] is limited to the
case of the implicit mid-point algorithm and the scheme corresponding to only one predictor and one corrector passes,
for the case of a purely acoustic system, with no viscosity. Our work is instead focussed on exploring the peculiar
behavior of the even and odd iterations of the predictor/multi-corrector, including the effects of viscosity, and it is in
agreement with the specific cases discussed in [3].

The rest of the exposition is organized as follows: Section 2is devoted to presenting the equations of Lagrangian
hydrodynamics, deriving an appropriate and representative linearization. In Section 3, a discrete system of equations is
obtained in the case of one dimension and periodic boundary conditions. By means of the Discrete Fourier Transform,
the von Neumann stability analysis is applied in Section 4 tothe system of discrete equations. Section 5 is devoted
to the analysis of the purely acoustic system of equations. In Section 6 the analysis is restricted to the highest wave
numbers, with the purpose of deriving a simple stability bound for the time step in practical computations. In Section
7 the effect of viscosity on the stability of all discrete modes is also accounted for. A number of one-dimensional
compressible flow computations are presented in Section 8, to confirm the theoretical findings also in the nonlinear
case, for an ideal gas. A summary is presented in Section 9.
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Figure 1: Sketch of the Lagrangian mapϕ.

2. A simplified Lagrangian hydrodynamics system

In order to apply the von Neumann stability analysis to the system of equations of Lagrangian shock hydrodynam-
ics, a linearization procedure is necessary. To this goal, we briefly summarize the system of Lagrangian equations for
a compressible fluid in which heat fluxes, heat sources, and body forces are absent. LetΩ0 andΩ be open sets inRnd

(wherend is the number of spatial dimensions). Thedeformation

ϕ : Ω0→ Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinateX, representing the initial position of an infinitesimal material particle of the body, to
x, the position of that particle in the current configuration (see Fig. 1).Ω0 is the domain occupied by the body in its
initial configuration, with boundaryΓ0. ϕmapsΩ0 toΩ, the domain occupied by the body in its current configuration.
Thedeformation gradientanddeformation Jacobian determinantcan be defined as

F = ∇Xϕ , (3)

J = det(F) , (4)

where∇X is the gradient in the original configuration. In the domainΩ, the equations for the displacement update and
conservation of mass, momentum, and energy read:

u̇ = v , (5)

ρJ = ρ0 , (6)

0 = ρ v̇ + ∇xp , (7)

0 = ρǫ̇ + p∇x· v . (8)

Here,∇x and∇x· are the current configuration gradient and divergence operators, and ˙(·) indicates the material, or
Lagrangian, time derivative.u = x − X is the displacement vector,ρ0 is the reference (initial) density,ρ is the
(current) density,v is the velocity, andp is the pressure, assumed to abide an equation of state of the typep = p̂(ρ, ǫ),
with ǫ the internal energy per unit mass.
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In [13, 15], it was shown that the shock hydrodynamics equations can be reduced to the system form of a nonlinear
wave equation. Namely, (6), (7), (8) and the equation of state yield

0 = ρv̇ + ∇xp , (9)

0 = ṗ+ ρc2
s∇x·v , (10)

wherecs is the speed of sound in the medium. In the Lagrangian setting, the displacement and mass conservation
equations (5)-(6) are associated with a standing (in Lagrangian coordinates) entropy wave, governing the motion of
contact discontinuities. The incorporation of these equations in the analysis that follows is not essential, as the stability
bounds for the systems of equations under consideration aredominated by the acoustic characteristics associated with
equations (9) and (10).

Therefore, we will restrict our analysis to the system of equations (9) and (10), which can be easily linearized
adopting the small strain approximation (i.e.,∇x ≈ ∇X, the motion of the mesh is neglected), and assuming negligible
time and space variations of density and speed of sound. In order to achieve insightful results, we will consider a
simple one-dimensional flow with periodic boundary conditions. The reader will appreciate in what follows that the
derivations are quite involved, and that these assumptionsare essential to obtain meaningful results.

3. One-dimensional linearized variational formulation

We consider a weak formulation of the one-dimensional linearized equations of Lagrangian shock hydrodynamics,
augmented by a shock capturing artificial viscosity operator [15]. Namely, denoting byT the unit periodic torus along
the real lineR, we have, for every piece-wise linear (continuous) shape functionψ and every piece-wise constant
(discontinuous) shape functionφ,

0 =
∫

T

ψ V̇ −
∫

T

ψ,X P+
∫

T

ψ,X νV,X , (11)

0 =
∫

T

φ Ṗ+
∫

T

φ c2
s V,X , (12)

where, for the sake of simplicity, we have denotedV = ρv (recall ρ = const.) andP = p. Using the same
predictor/multi-corrector strategy adopted in [16], the discretization in time of (11)-(12) yields:

0 =
∫

T

ψ
(

V(i+1)
n+1 − Vn

)

− ∆t
∫

T

ψ,X P(i)
n+1/2

+ ∆t
∫

T

ψ,X ν (V,X)(i)
n+1/2 , (13)

0 =
∫

T

φ
(

P(i+1)
n+1 − Pn

)

+ ∆t
∫

T

φ c2
s (V,X)(i+1)

n+1/2 , (14)

where (·)(i) and (·)(i+1) are used to denote quantities computed with the predictor/corrector iterates (i) and (i + 1),
respectively, and the subscriptsn, n + 1, andn + 1/2 are used to indicate quantities at timetn, tn + 1, andtn+1/2 =

(tn + tn+1)/2.

Remark1. Observe that the latest available velocity iterate is used in the computation of the second term of (14), as
in [2, 4, 14, 15], with the purpose of conserving total energyin the nonlinear setting. We adopt this time discretization
to keep the analysis as close as possible to the algorithm effectively used in the computations in [2, 4, 14, 15], and we
refer to this method as theconservativetime integrator.

We assume a uniform, equispaced subdivision of the torusT into finite elements of measureh. The velocities are
approximated by piece-wise linear functions with degrees-of-freedom collocated at the nodes of the discretization,
while the pressures are approximated by piece-wise constants, with degrees-of-freedom collocated at the barycenters
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of the elements (staggered spatial discretization). In addition to the previous assumptions, mass lumping is adopted
in the momentum equation, yielding the following finite difference equations:

0 =V(i+1)
j,n+1 − V j,n +

σ

2cs

(

P(i)
j+1/2,n+1 + P j+1/2,n − P(i)

j−1/2,n+1 − P j−1/2,n

)

+
κ

2

(

−V(i)
j+1,n+1 − V j+1,n + 2V(i)

j,n+1 + 2V j,n − V(i)
j−1,n+1 − V j−1,n

)

, (15)

0 =P(i+1)
j+1/2,n+1 − P j+1/2,n +

csσ

2

(

V(i+1)
j+1,n+1 + V j+1,n − V(i+1)

j−1,n+1 − V j−1,n

)

, (16)

whereσ = cs∆t
h is the acoustic Courant number,κ = ν∆t

h2 , and j is the node index.

Remark2. In the simple one-dimensional, periodic case, equations (15)–(16) exactly coincide with the one-dimensional
version of the finite difference schemes detailed in [2, 4].

4. Von Neumann stability analysis

As customary in the von Neumann stability analysis (see [11,17] for details), because the boundary conditions
are periodic, we can expand the solution degrees-of-freedom as a finite, linear combination of complex exponentials
with complex coefficients. This eventually amounts to applying a Discrete Fourier Transform (DFT) operator to the
discrete equations (15)–(16). In particular, we have:

V(i)
j,n =

N/2
∑

k=−N/2+1

V̂(i)
k,ne

iβk j , (17)

P(i)
j+1/2,n =

N/2
∑

k=−N/2+1

P̂(i)
k,ne

iβk( j+1/2) , (18)

wherei =
√
−1, andV̂(i)

k,n is the Fourier coefficient associated with thekth harmonic, time stepn and iterate (i). Note

thatN is the number of elements (a multiple of 2), andβk =
2πhk
|T| =

2πk
N is an angularly scaled version of the integer

wave numberk (with |T| = meas(T) = Nh= 1 the measure of the torus). Complex exponentials associated to different
wave numbers satisfy a discrete orthogonality property:

N/2−1
∑

m=−N/2

eiβkmeiβqm = δkq , for − N/2 ≤ k, q ≤ N/2 , (19)

with δkq the Kronecker delta tensor (δkq = 1 if k = q, andδkq = 0 if k , q). We then substitute (17)-(18) into (15)-(16)

multiplied byeiβk1 j andeiβk2 ( j+1/2), respectively, and we sum overj. We multiply (16) byeiβk2 ( j+1/2) instead ofeiβk2 j , in
order to simplify the algebra, as the pressure variable is staggered in space with respect to the momentum equation.

Due to the orthogonality property (19), and the linearity ofthe system of equations (15)-(16), it is easy to verify
that the previous steps lead toN pairs of equations, coupling the dynamics of thekth pressure and velocity modes,
with −N/2+ 1 ≤ k ≤ N/2. Namely:

(I + A0)Ẑ
(i+1)
k,n+1 = A1Ẑ

(i)
k,n+1 + (I + A2)Ẑk,n , (20)

where

Ẑ
(i)
k,n =



















V̂(i)
k,n

P̂(i)
k,n



















(21)
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(a) Implicit. κ = 0. (b) Implicit. κ = 0. (c) Implicit. κ = 1/4.

(d) 1st iterate.κ = 0. (C) (e) 1st iterate.κ = 0. (L) (f) 1st iterate.κ = 1/4. (C)

(g) 2nd iterate.κ = 0. (C) (h) 2nd iterate.κ = 0. (L) (i) 2nd iterate.κ = 1/4. (C)

(j) 3rd iterate.κ = 0. (C) (k) 3rd iterate.κ = 0. (L) (l) 3rd iterate.κ = 1/4. (C)

(m) 4th iterate.κ = 0. (C) (n) 4th iterate.κ = 0. (L) (o) 4th iterate.κ = 1/4. (C)

Figure 2: Elevation plots of the spectral radiiρG(i) (σ, βk) for κ = 0, κ = 1/4, and various iterates of the predictor/multi-corrector algorithm. In the
top row, the implicit mid-point time integrator detailed in(39). In the subsequent rows, in ascending order, the iterates from one to four. Note that
in Figures 2(a), 2(b), 2(d), 2(e), 2(g), 2(h), 2(j), 2(k), 2(m), and 2(n) the vertical range is [0, 1.2], while in Figures 2(c), 2(f), 2(i), 2(l), 2(o) the
vertical range is [0, 1]. Also note that Figures 2(a) and 2(b) are identical.
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is thekth velocity/pressure modal pair, relative to thenth time step and theith iterate, and

I =















1 0

0 1















, (22)

A0 =

















0 0

i cs
2σ sin

(

βk

2

)

0

















, (23)

A1 =

















κ (cos(βk) − 1) −i 1
2cs
σ sin

(

βk

2

)

0 0

















, (24)

A2 =



















κ (cos(βk) − 1) −i 1
2cs
σ sin

(

βk

2

)

−i cs
2σ sin

(

βk

2

)

0



















. (25)

It is also very important to observe that because the degrees-of-freedom “signal” has real values, the discrete Fourier
coefficients must satisfy the complex conjugacy property

Ẑ
(i)
−k,n =

(

Ẑ
(i)
k,n

)∗
, for 0 ≤ k ≤ N/2− 1 , (26)

whereŴ
∗

indicates the complex conjugate ofŴ (componentwise). For the same reason, the following condition on
the often called “odd ball” mode holds:

Ẑ
(i)
N/2,n = 0 . (27)

Because complex conjugates have the same absolute value andopposite phase, it is sufficient to limit the study of
the amplification factors for the modes of the discrete system to the range 0≤ k < N/2, that is, 0≤ βk < π. In the
discussion that follows, it will also be important to consider a variation of the time-integration algorithm, in which
the velocity iterateV(i+1) in (16) is replaced by the previous iterateV(i). This method will be referred to as thelagged
approach. In this case, equation (16) becomes

0 =P(i+1)
j+1/2,n+1 − P j+1/2,n +

csσ

2

(

V(i)
j+1,n+1 + V j+1,n − V(i)

j−1,n+1 − V j−1,n

)

, (28)

and, consequently,A0 andA1 need to be modified as:

A0 = 0 , (29)

A1 = A2 . (30)

This approach yields a more straightforward time integrator for the linearized equations, which does not extend,
however, to a conservative scheme in the nonlinear case.

The vector equation (20) is a recurrence relationship between the predictor/multi-corrector iterates of the proposed
time-integration approach. Set

B0 = (I + A0)−1(I + A2) , (31)

B1 = (I + A0)−1A1 , (32)

and recall that the first guess for the new iterate at timetn+1 is the solution at timetn, namelyẐ
(0)
k,n+1 = Ẑk,n. Then, we

can derive explicit recurrence formulas for the computation of Ẑ
(i+1)
k,n+1 in terms ofẐk,n:

Ẑ
(1)
k,n+1 = B1Ẑ

(0)
k,n+1 + B0Ẑk,n

= (B0 + B1)Ẑk,n

= G(1)Ẑk,n , (33)
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(a) 1st iterate (C) (b) 2nd iterate (C) (c) 3rd iterate (C) (d) 4th iterate (C)

(e) 1st iterate (L) (f) 2nd iterate (L) (g) 3rd iterate (L) (h) 4th iterate (L)

Figure 3: Contour plots of the spectral radii of various iterates of the predictor/multi-corrector algorithm forκ = 0. Figures 3(a), 3(b), 3(c), and
3(d): Conservative scheme (C). Figures 3(e), 3(f), 3(g), and 3(h): Lagged scheme (L).

Ẑ
(2)
k,n+1 = B1Ẑ

(1)
k,n+1 + B0Ẑk,n

=
(

B1G(1) + B0

)

Ẑk,n

= G(2)Ẑk,n , (34)

Ẑ
(3)
k,n+1 = B1Ẑ

(2)
k,n+1 + B0Ẑk,n

=
(

B1G(2) + B0

)

Ẑk,n

= G(3)Ẑk,n , (35)

Ẑ
(4)
k,n+1 = B1Ẑ

(3)
k,n+1 + B0Ẑk,n

=
(

B1G(3) + B0

)

Ẑk,n

= G(4)Ẑk,n , (36)

Ẑ
(5)
k,n+1 = . . . , (37)

In the limit for an infinite number of iterations, we obtain the amplification matrix for the original implicit mid-point
algorithm from which the predictor/corrector time integrator is derived:

(I + A0)Ẑ
(∞)
k,n+1 = A1Ẑ

(∞)
k,n+1 + (I + A2)Ẑk,n , (38)

that is, removing the superscript (∞) from Ẑ
(∞)
k,n+1, and rearranging terms,

Ẑk,n+1 = (I + A0 − A1)−1(I + A2) Ẑk,n

= G(∞) Ẑk,n . (39)
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Remark3. The predictor/multi-corrector method can therefore be interpreted as a fixed-point iterative process, con-
verging to the solution of the implicit method (39). In particular, the conservative scheme has the nature of a Gauss-
Seidel iteration, as the matrixI + A0 is lower diagonal, while the lagged scheme resembles a Jacobi iteration, since in
this caseA0 = 0.

Remark4. Convergence of the fixed-point iteration is ensured if||B1|| < 1 (sufficient condition). It will be subse-
quently shown that this condition is equivalent to the temporal stability condition.

It is possible to evaluate the stability properties of the proposed predictor/multi-corrector algorithm, by evaluating
howG(i) evolves in time an initial condition. In particular, if

||G(i)|| = max
s∈R2\0

||G(i)s||
||s||

≤ 1 (40)

then stability of the numerical discretization is ensured.Defining the spectral radius as

ρ(G(i)) = max{|λ(G(i))|} ≤ ||G(i)|| , (41)

whereλ(G(i)) is a (generally complex) eigenvalue ofG(i), we can recast condition (40) as (see [7])

ρ(G(i)) < 1⇒ stability , (42)

ρ(G(i)) > 1⇒ instability . (43)

These conditions are consequence of a well-known theorem inmatrix analysis:

Theorem 1 (cf. [8], p. 298).Let A ∈ Cm×m, whereC is the complex field. Then:limn→∞ An = 0 if and only if
ρ(A) < 1.

Hence, ifρ(G(i)) < 1, Theorem 1 directly implies stability. Ifρ(G(i)) > 1, one can consider, as initial condition vector
Ẑ0, the eigenvector relative to an eigenvalueλ0 with |λ0| > 1. Using the properties of vector norms, it is easy to see
that limn→∞ ||Ẑn|| = limn→∞ ||(G(i))nẐ0|| = limn→∞ |λ0|n||Ẑ0|| = ∞, and we have instability. The case that our analysis
covers less precisely is the case whenρ(G(i)) = 1. Recalling that (see [8], p. 299)

ρ(G(i)) = lim
n→∞
||(G(i))n||1/n , (44)

it is easy to realize that the caseρ(G(i)) = 1 admits linear growth in the solution (i.e.,||(G(i))n|| = O(n)). However, the
analysis that follows (see, e.g., Figure 2) shows thatρ(G(i)) = 1 occurs in three special cases :

1. σ = 0⇔ ∆t = 0, a trivial case corresponding of no time evolution.
2. βk = 0, corresponding to the evolution in time of a constant mode.In this case, it is not necessary to resort to the

von Neumann analysis, to prove that the entire class of algorithms under considerationstablypreserves constant
solutions in time.

3. The time-step stability limit, as a limit case of the conditionρ(G(i)) < 1. This case is not so important in practical
(nonlinear) computations, since it is usually not safe to run computations exactly at the stability limit.

Notice also that a complex eigenvalue ofG(i) can be expressed as:

λ(G(i)) = |λ(G(i))|eiω̄∆t , (45)

whereω̄∆t = arg(λ(G(i))), andω̄ ∈ R is the phase. This decomposition will be important for the study of the dispersion
properties of the proposed time integration approach. An alternative expression for (45) is

λ(G(i)) = e(−ξ̄+iω̄)∆t , (46)
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Figure 4: Spectral radii for the predictor/multi-corrector algorithm in the caseκ = 0, for various values of the acoustic Courant numberσ. Figures
4(a)–4(d): Conservative scheme. Figures 4(e)–4(h): Lagged scheme. Black: Implicit time integrator. Orange, red, green and blue are used for the
first, second, third, and fourth iterate, respectively.

where

|λ(G(i))| = e−ξ̄∆t , or, ξ̄ = − log(|λ(G(i))|)
∆t

. (47)

By performing a Taylor expansion of̄ξ andω̄ in the limit of vanishing time step∆t and mesh sizeh, it is possible to
recover the truncation error and the formal order of accuracy of the various iterates of the method.

Due to the complexity of the algebra involved, we are not including the calculations and explicit expressions
of the eigenvalues of theG(i) matrices in the general case. We will present the fundamental results by appropriate
plots in Section 5 and Section 7. All algebraic symbolic manipulations were performed using the Mathematica R© TM

software [1, 18].

5. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial viscosity is usually present only in shock layers, and absent
in expansion regions. Therefore, it is very important to study the proposed time integrator in the limit of a vanishing
viscosity, as most of the flow domain is subject to this condition.

5.1. Amplification factor

Figure 2 shows the spectral radii of the matricesG(i) for i = 1, 2, 3, 4 andi → ∞ (implicit limit), for the conser-
vative and lagged algorithms in the caseκ = 0, and also for the conservative algorithm whenκ = 1/4. For the time
being, we focus on the plots relative toκ = 0.
First, note that the implicit algorithm detailed in (39) is neutrally stable (Fig. 2(a) and 2(b)), as the spectral radius
of the corresponding amplification matrix is equal to unity over the entire plane [σ, β]. The first and third iterates
of the conservative algorithm (C) areunconditionally unstable, while the second and fourth iterates are conditionally
stable, as shown in Figures 2(g) and 2(m). This phenomenon, somewhat surprising, can be explained by realizing
that the spectral radii for the predictor/multi-corrrector scheme exhibit anon-monotonicconvergence to unity as
(i) → ∞. Observe that the situation for the lagged algorithm is somewhat different, since the first two iterates are
unconditionally unstable (Fig. 2(e) and 2(h)), but the subsequent third and fourth iterates regain conditional stability
in the rangeσ ∈ [0, 1] (Fig. 2(k) and 2(n)). This fact can easily be observed in the contour plots of the spectral radii
presented in Figure 3, and perhaps even more clearly in the sections at various values ofσ presented in Figure 4.
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(a) Implicit. (b) Implicit.

(c) 1st iterate. (C) (d) 1st iterate. (L)

(e) 2nd iterate. (C) (f) 2nd iterate. (L)

(g) 3rd iterate. (C) (h) 3rd iterate. (L)

(i) 4th iterate. (C) (j) 4th iterate. (L)

Figure 5: Elevation plots of the dispersion ratio ¯ω/ω, for κ = 0, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (39). In thesubsequent rows, in ascending order, the iterates from one to four. Figures 5(a), 5(c), 5(e),
5(g), 5(i) refer to the conservative algorithm (C), Figures5(b), 5(d), 5(f), 5(h), 5(j) refer to the lagged algorithm (L). Also note that Figures 5(a)
and 5(b) are identical.
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Also note in Figure 4(d) that the second iterate, indicated by a red line, shows the insurgence of a bifurcation (a
kink in the red curve, nearβk = 3π/4). Past the bifurcation point, the eigenvalues of the amplification matrix cease to
be complex conjugate and become real, as also evident in Figure 7(d), by the absence of a phase in the eigenvalues.
This is not a desirable property in wave propagation problems, where one would expect the discretized equations to
behave as a system of harmonic oscillators. Past the bifurcation point, the discrete solutions become real exponentials
in time, and cause an incorrect representation of the structure of the original system of partial differential equations.
The lagged algorithm does not show this behavior.

5.2. Dispersion error

When no viscosity is present, it is very insightful to evaluate the extent of the dispersion error in computations.
This can be done by observing that the classical dispersion relationship for a linear wave is given byω = 2πkcs/|T|.
Recalling thatT = hN, it is easy to derive that

ω∆t = σβk . (48)

A typical measure of the dispersion error is given by the ratio

ω̄

ω
=

arg(λ(σ, βk))
σβk

. (49)

Figure 5 shows elevation plots of the ratio ¯ω/ω. It is noticeable in Figures 5(e) and 5(i) that bifurcation takes place
for values of [σ, βk] in the neighborhood of [1, π], for the second and forth iterate of the conservative algorithm,
respectively. As already mentioned, this behavior is not present for the lagged scheme.

Contour plots of the dispersion ratio are presented in Figure 6. The black thick lines indicate the loci where the
dispersion ratio equals unity, that is, optimal behavior (no phase error).

Comparing the various results in Figure 7, notice the good behavior of the conservative approach in retaining the
dispersion properties of the corresponding implicit method, at least until a bifurcation arises for the second iterate
(see Figs. 7(a), 7(b), 7(c), and 7(d)). This is not the case for the lagged scheme, for which all the iterates have quite
different phase characterization with respect to the implicit method (Figs. 7(e), 7(f), 7(g), and 7(h)).

5.3. Low wave number limit and truncation error

A Taylor expansion of the amplification factorρ and dispersion ratio ¯ω/ω in a right neighborhood ofβk = 0 can
more clearly quantify the previous conclusions on the nature of the proposed conservative algorithm.

ρ(G(1)) =1+
σ2β2

k

4
+O(β3

k) ,
ω̄(G(1))
ω

= 1− 4+ 11σ2

96
β2

k +O(β4
k) , (50)

ρ(G(2)) =1−
σ4β4

k

16
+O(β5

k) ,
ω̄(G(2))
ω

= 1− 2+ σ2

24
β2

k +O(β4
k) , (51)

ρ(G(3)) =1+
σ6β6

k

64
+O(β7

k) ,
ω̄(G(3))
ω

= 1− 2+ σ2

24
β2

k +O(β4
k) , (52)

ρ(G(4)) =1−
σ8β8

k

256
+O(β9

k) ,
ω̄(G(4))
ω

= 1− 2+ σ2

24
β2

k +O(β4
k) . (53)

Hence, it is clearly noticeable the fact that the low modes are amplified for odd iterates and damped for even iterates.
The dispersion of low modes, instead, seems to maintain the same limit behavior as soon as the number of iterates is
larger than one. Furthermore, a Taylor series expansion ofξ̄ andω̄ in powers of∆t andh allows to evaluate the order
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(a) 1st iterate. (C) (b) 2nd iterate. (C) (c) 3rd iterate. (C) (d) 4th iterate. (C)

(e) 1st iterate. (L) (f) 2nd iterate. (L) (g) 3rd iterate. (L) (h) 4th iterate. (L)

Figure 6: Contour plots of the ratio ¯ω/ω, for κ = 0, and various iterates of the predictor/multi-corrector algorithm. Figures 6(a), 6(b), 6(c), and
6(d): Conservative scheme. Figures 6(e), 6(f), 6(g), and 6(h): Lagged scheme. The black continuous line indicates the locusω̄/ω = 1.
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Figure 7: Plot of the ratio ¯ω/ω, for κ = 0, for various values of the acoustic Courant numberσ. Figures 7(a)–7(d): Conservative scheme. Figures
7(e)–7(h): Lagged scheme. Color scheme is as follows. Blackis used for the implicit version of the algorithm. Orange, red, green and blue are
used for the first, second, third, and fourth iterate, respectively.
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of convergence of the proposed method. We obtain:

ξ̄(G(1)) = − 1
4

c2
sk̃

2∆t +O(h2∆t) , (54)

ω̄(G(1)) = ω − 1
24

csh
2k̃3 − 11

96
c3

sk̃
3∆t2 +O(∆t2h2) , (55)

ξ̄(G(2)) =
1
16

c4
sk̃

4∆t3 +O(h2∆t3) , (56)

ω̄(G(2)) = ω − 1
24

csh
2k̃3 − 1

12
c3

sk̃
3∆t2 +O(∆t2h2) , (57)

ξ̄(G(3)) = − 1
64

c6
sk̃

6∆t5 +O(h2∆t5) , (58)

ω̄(G(3)) = ω − 1
24

csh
2k̃3 − 1

12
c3

sk̃
3∆t2 +O(∆t2h2) , (59)

ξ̄(G(4)) =
1

256
c8

sk̃
8∆t7 +O(h2∆t7) , (60)

ω̄(G(4)) = ω − 1
24

csh
2k̃3 − 1

12
c3

sk̃
3∆t2 +O(∆t2h2) , (61)

whereκ̃ = 2πk/|T|, so thatω = κ̃cs. Consequently, the first, second, third and fourth iteratesof the predictor/multi-
corrector conservative method are first-, third-, fifth- andseventh-order accurate with respect to the dissipation error.
All iterates are second-order accurate with respect to the dispersion error.

6. Stability of the highest wavembers

Before proceeding with the case in which dissipation is present, it is important to develop a preliminary analysis
of stability for the highest spatial wave numbers in the discrete equations. Stability of the highest modes in the
computation is a necessarybut not sufficient condition for overall stability. However, an understanding on the high
wave number dynamics can shed light on the overall behavior of the algorithm, and, most importantly, provide stable
time estimates of practical use in computations.

The amplification of the highest wave number is governed by the matricesG(i), whenβk is set equal toπ. In this
case, a number of algebraic manipulations leads to the following expressions for the eigenvalues of the matricesG(i)’s:

λ
(1)
1,2 =1− σ2 − 2κ (62)

∓
√

σ4 + 4σ2(−1+ κ) + 4κ2 , (63)

λ
(2)
1,2 =1− 2σ2 + σ4 − 2κ + 4σ2κ + 4κ2 (64)

∓
√

−1+ 2σ4 + 4κ − 8κ2 + (1+ σ4 − 2κ + 4κ2 + σ2(−2+ 4κ))2 , (65)

λ
(3)
1,2 = . . . , (66)

where we have omitted the derivations for the third and higher iterates, since the algebraic expressions become very
complex and tedious to manipulate. Let us consider the second iterate, that is the first iterate for which second-order
accuracy is achieved, and analyze the stability condition−1 ≤ λ

(2)
1,2 ≤ 1. Only the right bound is meaningful for

stability. Settingλ(2)
1,2 = 1 yields a polynomial equation, with rootsσ = 0,σ = −

√
1− 2κ, andσ =

√
1− 2κ. Only the

last root is useful in defining a stability limit, which, taking squares, reads

σ2 + 2κ − 1 ≤ 0 , or, c2
s∆t2 + 2ν∆t − h2 ≤ 0 . (67)

The same condition is derived in the case of four iterations of the predictor/multi-corrector algorithm, with much more
complex algebraic manipulations. Solving the quadratic equation associated with (67) yields the bounds

−ν −
√

ν2 + c2
sh2

c2
s

≤ ∆t ≤
−ν +

√

ν2 + c2
sh2

c2
s

. (68)

13



(a) 1st iterate. (b) 2nd iterate. (c) 3rd iterate. (d) 4th iterate.

Figure 8: Contour plots of the spectral radii for various predictor/multi-corrector iterates of the conservative algorithm, in the caseκ = 1/4. The
red continuous line correspond to the isoline for the spectral radius equal to unity.
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Figure 9: Contour plots of the loci of the spectral radii equal to unity, in the caseκ = 1/4. The color scheme is as follows. First iterate in black,
second iterate in blue, third iterate in green, fourth iterate in red. The curve relative to the second iterate is not visible as it overlaps with the one
relative to the fourth iterate.
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Figure 10: Spectral radii for the predictor/multi-corrector algorithm in the caseκ = 1/4, for various values of the acoustic Courant numberσ, for
the conservative scheme. Color scheme is as follows. Black:Implicit time integrator. Orange, red, green and blue are used for the first, second,
third, and fourth iterate, respectively.

The left bound is always verified, while the right gives the stability limit. Multiplying and dividing the entire inequality
by ν +

√

ν2 + c2
sh2 (always a strictly positive quantity) and simplifying the termc2

s, we obtain

∆t ≤
h2

ν +
√

ν2 + c2
sh2

. (69)

Remark5. In the limit of a vanishing artificial viscosity, the acoustic Courant-Friedrichs-Levy condition is obtained,
namely,

∆t ≤ h
cs
, or, σ ≤ 1 . (70)

Remark6. In the limit of a vanishing speed of sound (condition very often encountered in hypervelocity impact
problems), the stability limit is uniquely dependent on theartificial viscosityν and takes the classical form of the
dissipative Courant-Friedrichs-Levy condition:

∆t ≤ h2

2ν
, or, κ ≤ 1

2
. (71)

Remark7. The predictor multi-corrector approach can also be interpreted as a fixed-point iteration procedure [15]. A
sufficient condition for the convergence (in spectral space) of such procedure is||B1|| < 1, that isρ(B1) < 1. It is not
difficult to verify that, whenβk = π, this condition coincides with (67).

7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shock hydrodynamics computations to enhance the robustness
of the algorithms under extreme shock wave conditions. Viscosity operators usually are modeled as Laplace diffusive
operators, and may pose additional constraints on stability, further limiting the time step. In this case, because of the
parabolic nature of the problem, the dispersion error analysis is less relevant and is omitted. Also, only results for the
conservative scheme are presented, since this method is themain focus of the present work.

7.1. Amplification factor

The amplification factor (spectral radius) of the matricesG(i) is presented as a function of the non-dimensional
wave numberβk and acoustic Courant numberσ in Figures 2(c), 2(f), 2(i), 2(l), and 2(o), for a value of thenon-
dimensional viscosity coefficientκ = 1/4. A comparison with the plots in Figure 2 for the case ofκ = 0 shows that
the introduction of diffusion in the proposed predictor/multi-corrector algorithm further restricts the stability range
of the even iterates but provides a stability range for the otherwise unstable odd iterates. This fact can more clearly
be observed in Figures 8 and 9. Recalling that, by definition and the developments in Section 6, 0≤ σ ≤ 1, and
0 ≤ κ ≤ 1/2 are necessary for stability, a rearrangement of (67) yields the stability condition:

σ ≤
√

1− 2κ , (72)
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(a) 1st iterate. (b) 2nd iterate.

(c) 3rd iterate. (d) 4th iterate.

Figure 11: Three-dimensional (red) surfaces representingthe loci of the spectral radii equal to unity for the first fouriterates of the conservative
predictor/multi-corrector scheme. The blue surfaces represent the stability limit given by (67) (or, equivalently, (69)).
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Figure 12: Density versus spatial position at time 2.124× 10−5 for the periodic breaking wave test problem. Solutions for different number of
iterations of the predictor/multi-corrector algorithm are computed with no artificial viscosity andCFL = 0.90.

from which, whenκ = 1/4, we obtainσ ≤
√

2/2 ≈ 0.707. This result can also be verified in Figure 9, forβk = π.
The convergence of the spectral radii of the various iterates to the spectral radius of the implicit case can be evaluated
in Figure 10 where sections of the elevation plots of Figure 2at various values of the parameterσ are presented.
Bifurcations of the eigenvalues for the sections atσ = 0.7, 0.8, 0.9 are clearly visible, although in this case, their
effect is not so problematic, because now the original system ofpartial differential equations has the nature of a wave
problem with dissipative damping.

Perhaps the most important plots of this entire article are presented in Figure 11, in which red three-dimensional
contour surfaces show the loci of the spectral radii equal tounity for the first, second, third, and fourth iterate of the
conservative version of proposed method, in the space [σ, βk, κ]. A blue surface represents the stability limit when
equality holds in (67).

Note that in Figures 11(a) and 11(c) the stability region is bounded by two red surfaces. Therefore the presence
of diffusion is stabilizing for the first and third iterates, which would otherwise be unstable. The second and forth
iterates (Figs. 11(b) and 11(d)) are conditionally stable (at least by visual inspection, since the stability region extends
below the red surfaces), with stability condition given by (69)). Hence, in this case, the highest wave numbers seem
to impose the most restrictive constraint on the time step.
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Figure 13: Density versus spatial position at time 3.728× 10−5 for the periodic breaking wave test problem. Solutions for different number of
iterations of the predictor/multi-corrector algorithm are computed with active artificial viscosity andCFL = 0.90.

Remark8. The effect of a non-vansihing artificial viscosity is not felt in thetruncation error for the phase, which
maintains the same order of accuracy as in the undamped case.The truncation error for the dissipation is instead
affected, as all iterates do not exceed first-order accuracy, with respect to the undamped wave propagation case.

8. Numerical simulations

We present two tests to show how the time step estimate derived in Section 6 performs.

8.1. Periodic Breaking Wave
An interesting numerical test is represented by a breaking wave problem similar to the one described in [5, 6]. The

domain of the problem is the interval [0, 1], subdivided into 200 elements, with periodic boundary conditions. The
material is aγ-law ideal gas [10] withγ = 5/3. The initial density has a sinusoidal variation

ρ(x, 0) = 0.001(1.0+ 0.1 sin(2πx)) .

The initial pressure is

p(x, 0) = 106

(

ρ(x, 0)
0.001

)γ

,

and the initial velocity is

v(x, 0) = 2
(cs0 − cs)

γ − 1
,
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where

cs =

(

γ
p(x, 0)
ρ(x, 0)

)1/2

,

and

cs0 =

(

γ
106

0.001

)1/2

.

The solution is smooth for a finite time 0< Tbreak < ∞, at which point the wave breaks and a shock forms [5, 6].
The nonlinear version of the present algorithm, described in detail in [14, 15], is used. The results of Figure 12 are
obtained for several predictor/multi-corrector iterates, with no viscosity applied. The results of Figure 13 are obtained
with coefficients for the linear and quadratic part of the nonlinear artificial viscosity chosen asc1 = 0.15 andc2 = 2.0,
respectively. All simulations were run usingCFL = 0.90. Consistent with the preceding analysis, an even number
of iterations appears to be stable. An odd number of iterations produces unstable results when no artificial viscosity
is applied, but stability is regained in the case of 7 iterations when the artificial viscosity is active. This may be
the result of the convergence of the predictor/multi-corrector algorithm in combination with the dissipation produced
by the artificial viscosity. In practical computations, however, one cannot expect the artificial viscosity to be active
everywhere in the computational domain.

8.2. Interacting Blast Waves

As a second numerical test, we consider the Woodward-Colella interacting shock wave test problem [19]. In
one dimension the domain of the problem is the interval [0, 1], subdivided into 400 elements. Again, the material
is aγ-law ideal gas withγ = 1.4. The gas is initially at rest between reflecting walls, witha uniform initial density
everywhere equal to 1. On the subdomain [0, 0.1] the initial pressure is 1000 and on the subdomain [0.9, 1.0] the initial
pressure is 100. Everywhere else the pressure is initialized to 0.01. Two strong shock waves develop and interact. The
linear and quadratic part of the nonlinear artificial viscosity have coefficientsc1 = 0.15 andc2 = 2.0, respectively.
Figure 14 plots the numerical results of density versus position for various values of theCFL control parameter. Two
predictor/corrector iterations are used for these simulations. The simulations withCFL 6 1 do not show any sign of
instability, while the simulations withCFL > 1.10 appear mildly unstable. The time step stability estimateseems to
be accurate (and more restrictive) to within about 10%, at least for this test problem.

Remark9. This added stability may be due to the conservation properties enjoyed by the algorithm in the nonlinear
setting, which bound the global total energy to stay constant throughout the computation.

Remark10. The large spurious overshoot in density atx ≈ 0.765 is typical of Lagrangian simulations of this test [9,
12], and is a somewhat expected feature in this computation.

9. Summary

We have presented a von Neumann stability analysis of a linearized version of the predictor/multi-corrector al-
gorithm proposed in [14, 15], which, at least in the one-dimensional setting, coincides with the time integrators
documented in [2, 4]. We have highlighted as a curious feature of this algorithm, that the odd iterates are uncondi-
tionally unstable, while the even are conditionally stable(at least up to four iterates). Numerical test showed that the
time-step stability bound derived in the linearized analysis works well also in the nonlinear case.
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